FULL PAPER

Metallkomplexe mit funktionalisierten Schwefelliganden. XIV [1]

Synthese von Thiosulfinatokomplexen über die Oxidative Addition von Platin(0)-Komplexen an 2,3,4-Benzotrithiepin-1-oxide

R. Wünsch und W. Weigand*

Jena, Friedrich-Schiller-Universität, Institut für Anorganische und Analytische Chemie

G. Nuspl

München, Ludwig-Maximilians-Universität, Institut für Anorganische Chemie

Eingegangen am 16. August 1999

Herrn Prof. Dr. E. Uhlig zum 70. Geburtstag gewidmet

Metal Complexes of Functionally Sulfur Ligands. XIV. Synthesis of Thiosulfinato Complexes *via* Oxidative Addition of Platinum(0) Complexes to 2,3,4-Benzotrithiepin-1-Oxides

Keywords: Platinum, S ligands, Sulfur heterocycles, EHMO calculations, Benzotrithiepin-1-oxides

Abstract. The platinum(0) compounds $L_2Pt(\eta^2-C_2H_4)$ [L = PPh₃, 1/2 dppf, 1/2 (*R*,*R*)-(-)-DIOP] **3a**-**c** react with the 2,3,4benzotrithiepin 1-oxides **2a**-**c** to give the platinum(II) thiolato thiosulfinato complexes $L_2Pt[S-S(O)-CH_2-C_6R_2R_2^2-CH_2-S]$ (R¹ = H, R² = CH₃; R¹ = CH₃, R² = H) **4a**-**6c**. Treatment of **5a** with an excess of PBu₃ efficiently affords (Bu₃P)₂Pt[S–S(O)-CH₂-C₆Me₂H₂-CH₂-S] **7** by substitution of PPh₃. Complex **7** reacts in solution with PBu₃ to the

Die Thiosulfinsäure R–S(O)–SH als Schwefelhomologes der Sulfinsäure R–S(O)–OH ist bisher unbekannt. Isoliert und charakterisiert wurden bisher von Mikołajczyk *et al.* einige wenige relativ stabile Salze, die am Sulfinyl-Schwefelatom sterisch anspruchsvolle Gruppen tragen [2]. Vor allem die entsprechenden Thiosulfinsäure–S-ester (Thiosulfinate) R-S(O)–S-R' bilden eine Klasse gut untersuchter Verbindungen. Zahlreiche stabile (a)cyclische Vertreter wurden in den letzten Jahrzehnten hergestellt und ihre chemischen Eigenschaften sowie ihre biologische Aktivität untersucht [3].

Es besteht Interesse, instabile Anionen dieser hochreaktiven Thiosulfinsäuren an Übergangsmetall-Komplexfragmenten zu koordinieren und strukturell zu charakterisieren. Übergangsmetall-Komplexe, die Thiosulfinat-Anionen enthalten, sind bisher wenig bekannt: A. Shaver *et al.* [4] und uns [5] gelang vor einigen Jahren die Isolierung der ersten stabilen Ruthenium(II)-thiosulfinato-Komplexe; dabei reagieren die Hydrogensulfido-Komplexe CpRu(L)(PPh₃)(SH) (L = CO, PPh₃) mit den *N*-(Alkyl- bzw. Arylsulfinyl)-phthalimiden phth–S(O)-R (phth = Phthalimido) unter Bildung einer neuen Schwefel–Schwefel-Bindung zu Komplexen des Typs CpRu(L)(PPh₃)[S–S(O)-R]. Alternativ können auch Übertragungsreagenzien für die Thiosulfinat-Einplatinum(II) sulfenato thiolato complex $(Bu_3P)_2Pt[S(O)-CH_2-C_6Me_2H_2-CH_2-S]$ 8 as well as S=PBu₃. The compounds 4a – 6c have been characterized by analytical and spectroscopic methods. Simple qualitative MO calculations of the extended Hückel type by using the CACAO package indicate that the platinum(0) species acts as a Lewis acid attacking the nucleophilic sulfur atom S(3).

heit wie *N*-[(Alkyl- bzw. Arylsulfinyl)thio]-phthalimide phth–S–S(O)-R [6] oder cyclische Organotrisulfid-1-S-oxide [1] zur Herstellung von Thiosulfinato-Komplexen eingesetzt werden.

Einen einfachen Zugang zu Übergangsmetall-koordinierten Thiosulfinaten bietet die oxidative Addition von 2,3,4-Benzotrithiepin-1-oxiden an elektronenreiche, koordinativ ungesättigte Bisphosphan–Platin(0)-Komplexe.

Ergebnisse und Diskussion

Die chiralen 2,3,4-Benzotrithiepin-1-oxide $2\mathbf{a} - \mathbf{c}$ erhält man durch Oxidation der entsprechenden Trithiepine $1\mathbf{a} - \mathbf{c}$ als Racemate [7]. Die Reaktion verläuft unter milden Bedingungen mit einem geringen Überschuß an *m*-Chlorperbenzoesäure (*m*CPBA) in Ether. Nach 24 h isoliert man aus Ether die 2,3,4-Benzotrithiepin-1-oxide $2\mathbf{a} - \mathbf{c}$ als farblose Kristalle. Die Oxidation erfolgt regiospezifisch an dem zur Methylengruppe benachbartem Schwefelatom. Quantenchemische Rechnungen zeigen, daß das MeS(O)–S–SMe Isomer um 10,7 kJ/mol stabiler als das 2-Oxid MeS–S(O)–SMe ist [8].

Die Platin(0)-Komplexe 3a-c reagieren mit den

2,3,4-Benzotrithiepin-1-oxiden $2\mathbf{a} - \mathbf{c}$ innerhalb einiger Stunden in Toluol regiospezifisch unter Insertion des Platinatoms in die S–S-Bindung zu den Thiolato-Thiosulfinato-Komplexen $4\mathbf{a} - 6\mathbf{c}$, die als gelbe bis gelbgrüne luft- und wasserunempfindliche Substanzen isoliert werden. Eine Einschubreaktion in die S–S(O)-Bindung wird in keinem Fall beobachtet. Bei der oxidativen Addition des optisch reinen Platin(0)-Komplexes $3\mathbf{c}$ an $2\mathbf{a} - \mathbf{c}$ entstehen die Verbindungen $4\mathbf{b}$, $5\mathbf{c}$ und $6\mathbf{c}$ als Gemische der beiden möglichen Diastereoisomeren im Verhältnis 1:1.

Versetzt man eine Lösung von **5a** in Dichlormethan mit einem 2,5-fachen Überschuß an Tributylphosphan, wird der Triphenylphosphan-Ligand vollständig von Tributylphosphan substituiert (**7**); das überschüssige Tributyl-phosphan eliminiert selektiv das sulfidische Schwefel-atom in der S–S(O)-Einheit, und es entstehen dabei quantitativ der Sulfenato-thiolato-platin(II)-Komplex **8** und Bu₃P=S.

In den IR-Spektren der Komplexe **4a**–**6c** findet man die S=O-Schwingungsbande bei etwa 1 027–1 055cm⁻¹; damit liegen sie in dem für andere Platin(II)- sowie Ruthenium(II)–thiosulfinato Komplexe typischen Bereich [1, 4–6]. Im Gegensatz dazu beobachtet man für den Sulfenato-Thiolato-Komplex **8**, in dem die S=O-Gruppe direkt an das Zentralmetallion koordiniert ist, die S=O-Bande bei signifikant kleineren Wellenzahlen (964 cm⁻¹) [9]. Diese unterschiedliche Lage kann als wichtiges Indiz für eine Insertion des Platin(0)-Komplexfragmentes in die S–S-Bindung gewertet werden. Die ³¹P-NMR-Spektren von **4a–6c** zeigen das typi-

J. Prakt. Chem. 1999, 341, No. 8

sche Aufspaltungsmuster eines AB-Spinsystems entsprechend einer *cis*-Konfiguration der Phosphan-Liganden. Die beiden ${}^{1}J({}^{31}P^{195}Pt)$ -Kopplungen des jeweiligen Komplexes sind relativ ähnlich und in einer Grö-Benordnung, wie sie für Phosphan-Liganden auftreten, die sich *trans* zu einem koordinierten Thiosulfinat befinden [1, 6]. Dies ist ein weiterer guter Hinweis für eine Insertion des Platinatoms ausschließlich in die S– S-Bindung. Bis zu 800 Hz kleinere ${}^{1}J({}^{31}P^{195}Pt)$ beobachtet man in Platin(II)-Komplexen, in denen ein Sulfenato- *trans* zu einem Phosphan-Ligand koordiniert vorliegt [3m, 9].

Die Komplexe **4b**, **5c** und **6c** enthalten zusätzlich zum chiralen sulfoxidischen Schwefelatom zwei weitere stereogene Zentren am (R,R)-(–)-DIOP-Liganden, so daß für diese Verbindungen Gemische zweier Diastereoisomere mit den absoluten Konfigurationen RRR_{SO} sowie RRS_{SO} zu erwarten sind; entsprechend treten in den ³¹P-NMR-Spektren jeweils zwei Aufspaltungsmuster eines AB-Spinsystems im Verhältnis 1:1 auf.

In den 2,3,4-Benzotrithiepin-1-oxiden 2a-c sowie in den Komplexen 4a-8 sind die Wasserstoffatome der beiden Methylengruppen diastereotop, was in den ¹H-NMR-Spektren zu vier Signalgruppen führt. In den Komplexen 4a-6c sind die Resonanzsignale der beiden Wasserstoffatome H¹/H² der an das sulfoxidische Schwefelatom gebundenen Methylengruppe gegenüber denen der entsprechenden Protonen der 2,3,4-Benzotrithiepin-1-oxide $2\mathbf{a} - \mathbf{c}$ bis etwa 0.4 ppm zu tiefem Feld verschoben; bei etwa 1,0-1,5 ppm höherem Feld findet man die chemischen Verschiebungen der beiden anderen Methylenprotonen H³/H⁴. Eine ähnliche Tendenz beobachtet man auch für die ¹³C-Resonanzsignale der Methylenkohlenstoffatome Ca/Cb; während das 13C-Resonanzsignal für das C^b-Atom um ca. 4 ppm zu höherem Feld verschoben ist, erfährt das Signal des Ca-Atoms eine Tieffeldverschiebung um 13 ppm.

Einfache semiempirische LCAO-Rechnungen geben einen qualitativen Einblick in die oxidative Addition von 2,3,4-Benzotrithiepin-1-oxiden an Platin(0)-Komplexe. Dazu wurde das Programmpaket CACAO [10] angewendet, das auf der Extended-Hückel Methode basiert [11]. Abb. 1a und b zeigen eine 3D-Darstellung des LUMOs sowie HOMOs des 2,3,4-Benzotrithiepin-1-oxides **2a**. Bei diesen MO-Rechnungen wurden die kristallographischen Daten aus der Einkristallröntgenstrukturanalyse von **2a** eingesetzt [1]. Wie aus Abb. 1b ersichtlich wird, setzt sich in dieser Konformation das HOMO des 2,3,4-Benzotrithiepin-1-oxides zu einem überwiegenden Anteil aus den Atomorbitalen der Schwefelatome zusammen. Weiteren Aufschluß ergibt die Durchführung einer Mulliken-Populationsanalyse, deren Ergebnisse für die beiden Grenzorbitale in Tabelle 1 zusammengefaßt sind.

Abb. 1 (a) LUMO (b) HOMO des 2,3,4-Benzotrithiepin-1oxides (2a)

Tabelle 1 zeigt, daß die 3p Orbitale des S(3) Atoms einen Anteil von 51% am HOMO des 2.3.4-Benzotrithiepin-1-oxids aufweisen. Dabei sind die beiden Valenzelektronen des HOMOs zu einem großen Anteil am S(3) Atom lokalisiert. Deshalb greift vermutlich in einem ersten Reaktionsschritt das Lewis-saure 14-Elektronen (Bisphoshan)-Platin(0)-Komplexfragment elektrophil an S(3) an. Für das S(2)-Atom sollte mit einem Beitrag von nur 21% am HOMO des 2,3,4-Benzotrithiepin-1-oxides die Nucleophilie deutlich schwächer ausgeprägt sein, für S(1) ist sie praktisch vernachlässigbar. Mit Hilfe dieser einfachen Betrachtungen kann man die Regiochemie der oxidativen Addition von 2a an das (Bisphoshan)-Platin(0)-Komplexfragment erklären. Die Insertion erfolgt bevorzugt in die S(2)-S(3)-, nicht jedoch in die S(1)-S(2)-Bindung.

Potentiell können Bisphosphan–Platin(0)-Komplexfragmente nicht nur als Lewis-Säuren, sondern auch als Lewis-Basen reagieren [12]. Ein nucleophiler Angriff der Platin(0)-Spezies an das LUMO von der im Festkörper vorliegenden Konformation **2a** ist jedoch nicht zu erwarten, da im Gegensatz zum HOMO die Atomorbitale der Schwefelatome nicht signifikant zum LUMO von **2a** beitragen (Abb. 1a). Herrn Dr. W. Amrein (ETH Zürich, Laboratorium für Organische Chemie) gilt unser Dank für die Aufnahme der FAB-Massenspektren. Der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der Degussa AG, Werk Wolfgang, danken wir für großzügige Förderung.

Beschreibung der Versuche

Alle Arbeiten wurden unter Stickstoff in destillierten Lösungsmitteln durchgeführt. IR (in KBr): Nicolet ZDX 5; ¹H-NMR, ¹³C{¹H}-NMR (Jeol EX 400, TMS als interner Standard), ³¹P{¹H}-NMR (85% H₃PO₄ als externer Standard); FAB-MS (VG-ZAB-VSEQ Spectrometer): positive Ionen FAB-Massenspektrometrie; die Massenzahlen beziehen sich auf die Isotope ³²S und ¹⁹⁵Pt; die für die Fragment-Ionen berechneten und beobachteten Isotopenmuster stimmen innerhalb der Fehlergrenzen überein. Die Verbindungen wurden in wenig Acetonitril oder Methylenchlorid gelöst, 1 ml dieser ca. 2 proz. Lösung auf einer Standard-Probenspitze aus rostfreiem Stahl mit 1-ml-Matrix (3-Nitrobenzylalkohol, Fluka) versetzt, das Gemisch nach kurzem Abblasen durch die Vakuumschleuse eingeführt und mit einer VG-LSIMS-Kanone (Cs+, 35 kV, 2 mA Strahlstrom) ionisiert. Die Messung des FAB-Massenspektrums erfolgte auf einem VG ZAB-VSEQ Spektrometer bei 8 kV Beschleunigungsspannung mit einer Auflösung (m/ Dm) von 2000 in MS1. Die Masseneichung und Auswertung wurde mit der OPUS Software von FISONS/VG vorgenommen. Die Benzotrithiepine 1a-c [7, 13], das 2,3,4-Benzotrithiepin-1-oxid **2a** [7] und $L_2Pt(\eta^2-C_2H_4)$ (**3a**: L = PPh₃ [14], **3b**: $L = 1/2 (\eta^5 - C_5 H_4 PPh_2)_2 Fe (dppf)$ [15], **3c**: L = 1/2(R,R)-(-)-DIOP [16] wurden nach literaturbekannten bzw. modifizierten Vorschriften erhalten.

2,3,4-Benzotrithiepin-1-oxide 2b und c

Zu einer Lösung von **1b** bzw. **1c** (1,14 g; 5 mmol) in 100 ml Ether tropft man innerhalb von 5 h eine Lösung von 55-proz. *m*-Chlorperbenzoesäure (1,60 g; 5,1 mmol) in 50 ml Ether. Nach 15 h wird die Lösung im Vakuum auf etwa 30 ml eingeengt und anschließend auf -50 °C abgekühlt. Dabei fallen die Produkte **2b** und **c** als farblose Niederschläge aus, die abgesaugt und mit 30 ml auf -60 °C gekühltem Ether gewaschen werden. Die farblosen Pulver werden im Ölpumpenvakuum getrocknet.

2b: Ausb. 0,93 g (76%); *Fp*. 110–12 °C. – IR ν /cm⁻¹ = 1077 s (S=O). – ¹H-NMR (CDCl₃): δ /ppm = 2,32/2,38 (s, 2CH₃, 6H), 4,03/4,76 [dd, ²*J*(HH) = 13,0 Hz, 2H, CH₂S(O)], 4,21/4,34 [dd, ²*J*(HH) = 11,6 Hz, 2H, CH₂S], 7,07/7,17 [dd, ³*J*(HH) = 7,8 Hz, 2H, Aromaten-H]. – ¹³C-NMR (CDCl₃):

Tab. 1 Mit Hilfe einer Mulliken-Populationsanalyse ermittelter Beitrag (%) der einzelnen Atomorbitale zum LUMO bzw. HOMO des 2,3,4-Benzotrithiepin-1-oxids. Das Vorzeichen (+/–) gibt die Phase des jeweiligen Atomorbitals an. Atomorbitale (mit Ausnahme von C_8), deren Beitrag unter 3 % liegt, sind nicht aufgeführt.

номо	S₃ 3p_x 8(-)	S₃ 3p_y 37(–)	S₃ 3p_z 6(+)	S₂ 3p_x 16(-)	S₂ 3p_z 5(+)	S₁ 3p _y 6(-)	O ₄ 2 p _y 3(+)	
LUMO	C₆ 2p_z 14(+)	C ₇ 2p _z 24(-)	C₈ 2p_z 2(+)	C ₉ 2p _z 13(+)	C ₁₀ 2 p _z 25(-)	C ₁₁ 2 p _z 3(-)		

 δ /ppm = 19,2/20,4 (s, 2CH₃), 35,3 (s, CH₂S), 59,9 [s, CH₂S(O)], 129,5/ 129,9/130,0/131,8/134,3/ 36,1 (s, Aromaten-C).

2c: Ausb. 0,86 g (70%); *Fp*. 114–115 °C; $C_{10}H_{12}OS_3$ (244,40 g/mol). – IR v/cm⁻¹ = 1 064 m/1082 s (S=O). – ¹H-NMR (CDCl₃): δ /ppm = 2,32 (s, 2CH₃, 6H), 4,11/,48 [dd, ²*J*(HH) = 12,7 Hz, 2H, CH₂S(O)], 3,98/4,37 [dd, ²*J*(HH) = 11,7 Hz, 2H, CH₂S], 6,90/6,93 [s, 2H, Aromaten-H]. – ¹³C-NMR (CDCl₃): δ /ppm = 19,2/19,4 (s, 2CH₃), 39,0 (s, CH₂S), 60,9 [s, CH₂S(O)], 126,4/127,4/127,5/131,7/133,4/139,0 (s, Aromaten-C). C₁₀H₁₂OS₃ Ber.: C 49,14 H 4,91 S 39,39

(244,40) Gef.: C 48,71 H 4,95 S 39,76.

Synthese der Komplexe 5a und 6a

Zu einer auf -70 °C gekühlten Lösung von **3a** (149 mg, 0,2 mmol) in 10 ml Toluol werden innerhalb von 15 min portionsweise **2b** bzw. **2c** (51 mg, 0,2 mmol) unter Rühren gegeben. Man läßt die schwach gelbe Lösung langsam aufwärmen (ca. 4 h) und rührt weitere 12 h bei Raumtemperatur. Innerhalb dieses Zeitraumes bildet sich ein fahlgelber Niederschlag. Dieser wird abzentrifugiert, mit je 10 ml Ether gewaschen und im Ölpumpenvakuum getrocknet. Man isoliert die Komplexe **5a** und **6a** als ockergelbe Pulver.

5a: Ausb. 166 mg (86%); *Fp*. 183–184 °C. – IR ν /cm⁻¹ = 1 039 s (S=O). – ¹H-NMR (CD₂Cl₂): δ /ppm = 2,29/2,30 (s, 2CH₃, 6H), 4,47/4,97 [dd, ²*J*(HH) = 13,4 Hz, 2H, CH₂S(O)], 3.0/3.7 [m/m, ²*J*(HH) = 12,9 Hz, 2H, CH₂S], 6,74/6,89 [dd, ³*J*(HH) = 7,6 Hz, 2H, Aromaten-H], 7,22 (m_c, 30H, PPh₃). – ³¹P-NMR (CDCl₃): δ /ppm = 19,84/21,93 [AB-Spinsystem, ²*J*(PP) = 17,8, ¹*J*(PPt) = 2857/3084 Hz]. – MS (pos.-FAB): *m*/z = 964 (M⁺, 44%), 916 (M⁺– SO, 9%). C₄₆H₄₂OP₂PtS₃ Ber.: C 57,31 H 4,39 S 9,98 (964,04) Gef.: C 56,84 H 4,43 S 9,50.

6a: Ausb. 148 mg (77%); *Fp*. 167–169 °C. – IR: $\nu/cm^{-1} = 1029$ br, s (S=O). – ¹H-NMR (CD₂Cl₂): $\delta/ppm = 2,21$ (s, 2CH₃, 6H), 4,41/4,84 [dd, ²*J*(HH) = 12,6 Hz, 2H, CH₂S(O)], 3,02/3,51 [dd/dd, ²*J*(HH) = 12,2, ⁴*J*(HP) = 5,1, ³*J*(HPt) = 14,2 Hz, 2H, CH₂S], 7,73/8,05 (s, 2H, Aromaten-H), 7,28 (m_c, 30H, PPh₃). – ³¹P-NMR (CDCl₃): $\delta/ppm = 18,86/21,78$ [AB-Spinsystem, ²*J*(PP) = 17,5, ¹*J*(PPt) = 2875/3075 Hz]. – MS (pos.-FAB): m/z = 964 (M⁺, 72%), 916 (M⁺ – SO, 3%). C₄₆H₄₂OP₂PtS₃ Ber.: C 57,31 H 4,39 S 9,98 (964,04) Gef.: C 57,49 H 4,58 S 9,38.

Synthese der Komplexe 4a, 5b und 6b

Zu einer auf 0 °C gekühlten Lösung von **3b** (155 mg, 0,2 mmol) in 10 ml Toluol werden innerhalb 15 min portionsweise **2a** (45 mg, 0,2 mmol), **2b** bzw. **2c** (51 mg, 0,2 mmol) gegeben. Aus den grünlich-gelben Lösungen fällt innerhalb einiger Stunden ein gleichfarbiger Niederschlag aus, der nach 15 h abzentrifugiert, zweimal mit je 10 ml Ether gewaschen und im Ölpumpenvakuum getrocknet wird. Die Komplexe **4a**, **5b** und **6b** erhält man als grünlich-gelbe Pulver.

4a: Ausb. 164 mg (85%); *Fp*. > 240 °C (Zers.). – IR ν /cm⁻¹ = 1 032 br, s (S=O). – ¹H-NMR (CD₂Cl₂): δ /ppm = 4,32/4,66 [dd, ²*J*(HH) = 12,5 Hz, 2H, CH₂S(O)], 2,88/3,42 [dd/dd,

²*J*(HH) = 12,2, ⁴*J*(HP) = 5,3, ³*J*(HPt) = 19,4 Hz, 2H, CH₂S], 3,71–4,62 (m, 8H, 2 η^{5} -C₅H₄), 7,28 (m_c, 24H, Aromaten-H). ³¹P-NMR (CD₂Cl₂): δ /ppm = 15,08/19,22 [AB-Spinsystem, ²*J*(PP) = 15,9, ¹*J*(PPt) = 2925/3167 Hz]. – MS (pos.-FAB): *m*/*z* = 966 (M⁺, 93%).

 $\begin{array}{rrrr} C_{42}H_{36}FeOP_2PtS_3 & \text{Ber.:} & C \ 52,23 & H \ 3,76 & S \ 9,96 \\ (965,80) & & \text{Gef.:} & C \ 52,62 & H \ 3,93 & S \ 10,04. \end{array}$

5b: Ausb. 155 mg (78%); *Fp*. > 205 °C (Zers.). – IR *v*/cm⁻¹ = 1038 s (S=O). – ¹H-NMR (CD₂Cl₂): δ /ppm = 2,23/2,26 (s, 2CH₃, 6H), 4,32/4,81 [dd, ²*J*(HH) = 13,5 Hz, 2H, CH₂S(O)], 2,73/3,35 [dd/dd, ²*J*(HH) = 11,2, ⁴*J*(HP) = 7,0 Hz, 2H, CH₂S],], 3,56 – 4,79 (m, 8H, 2 η ⁵-C₅H₄), 6,79/6,82 [dd, ³*J*(HH) = 7,6 Hz, 2H, Aromaten-H], 7,18 (m_c, 20H, PPh₂). – ³¹P-NMR (CD₂Cl₂): δ /ppm = 14,51/20,18 [AB-Spinsystem, ²*J*(PP) = 14,1, ¹*J*(PPt) = 2941/3171 Hz].

6b: Ausb. 153 mg (77%); Fp. > 215 °C (Zers.). v/IR (cm⁻¹) = 1027 s (S=O). – ¹H-NMR (CD₂Cl₂): $\delta/\text{ppm} = 2,04/2,09$ (s, 2CH₃, 6H), 4,21/4,70 [dd, ²J(HH) = 12,5 Hz, 2H, CH₂S(O)], 2,71/3,37 [dd/dd, ²J(HH) = 12,0, ⁴J(HP) = 5,1, ³J(HPt) = 25,4 Hz, 2H, CH₂S], 3,58–4,60 (m, 8H, 2 η^{5} -C₅H₄), 7,25 (m_c, 22H, Aromaten-H). – ³¹P-NMR (CD₂Cl₂): $\delta/\text{ppm} = 14,70/20,03$ [AB-Spinsystem, ²J(PP) = 15,2, ¹J(PPt) = 2938/3175 Hz]. C₄₄H₄₀FeOP₂PtS₂ Ber.: C 53,18 H 4,06 S 9,68

Synthese der Komplexe 4b, 5c und 6c

Zu einer auf -70° C gekühlten Lösung von **3c** (114 mg, 0,15 mmol) in 10 ml Toluol werden innerhalb von 15 min portionsweise **2a** (35 mg, 0,16 mmol), **2b** bzw. **2c** (39 mg, 0,16 mmol) unter Rühren gegeben. Man läßt die schwach gelbe Lösung langsam aufwärmen (ca. 4 h) und rührt weitere 12 h bei Raumtemperatur. Innerhalb dieses Zeitraumes bildet sich nur im Falle von **4b** ein fahlgelber Niederschlag. Dieser wird abzentrifugiert, mit je 10 ml Ether gewaschen und im Ölpumpenvakuum getrocknet. Man isoliert **4b** als hellgelbes Pulver. Die klaren Lösungen von **5c** bzw. **6c** werden im Vakuum auf etwa 5 ml eingeengt und mit 20 ml *n*-Hexan versetzt. Dabei fallen hellgelbe Niederschläge aus, die wie für **4b** beschrieben weiter bearbeitet und als **5c** bzw. **6c** identifiziert werden.

4b: Ausb. 81 mg (59%); *Fp*. 164–166 °C. IR *v*/cm⁻¹=1055 s (S=O). – ¹H-NMR (CD₂Cl₂): *Diastereoisomer I*: δ/ppm = 1,04/1,14 [s, 6H, C(CH₃)₂], 4,34–4,45 [m, 2H, CH₂S(O)], 2,8/3,2 (m, 2H, CH₂S), 7,05 (m_c, 24H, Aromaten-H). – ³¹P-NMR (CD₂Cl₂): δ/ppm = –1,91/–0,34 [AB-Spinsystem, ²*J*(PP) = 19,5, ¹*J*(PPt) = 2765/2758 Hz]. *Diastereoisomer II*: δ/ppm = 0,84/1,12 [s, 6H, C(CH₃)₂], 4,34–4,45 [m, 2H, CH₂S(O)], 2,7/2,8 (m, 2H, CH₂S), 7,05 (m_c, 24H, Aromaten-H). – ³¹P-NMR (CD₂Cl₂): δ/ppm = 4,15/5,16 [AB-Spinsystem, ²*J*(PP) = 18,8, ¹*J*(PPt) = 2760/2989 Hz]. – MS (pos.-FAB): *m/z* = 910 (M⁺, 33%). Elementaranalyse nicht zufriedenstellend.

5c: Ausb. 93 mg (66%); *Fp*. 163–166 °C. – IR ν /cm⁻¹ = 1054br, s (S=O). – ¹H-NMR (CD₂Cl₂): *Diastereoisomer I*: δ /ppm = 1,17/1,22 [s, 6H, C(CH₃)₂], 2,04/2,35 (s, 6H, 2CH₃), 4,45/4,88 [dd, ²*J*(HH) = 13,3 Hz, 2H, CH₂S(O)], 3,18/3,71

(dd/dd, ²*J*(HH) = 12,5, ⁴*J*(HP) = 6,6, ³*J*(HPt) = 20 Hz, 2H, CH₂S), 7,05 (m_c, 22H, Aromaten-H). – ¹³C-NMR (CD₂Cl₂): 20,69/20,65 [s, C(<u>C</u>H₃)₂], 26,58 (s, 2CH₃), 31,59 (s, CH₂S), 30–32 (m, PCH₂), 73,64 [s, CH₂S(O)], 76,09/76,98 (m, OCH). – ³¹P-NMR (CD₂Cl₂): δ /ppm = –1,09/1,38 [AB-Spinsystem, ²*J*(PP) = 17,3, ¹*J*(PPt) = 2959/2988 Hz].

Diastereoisomer II: δ /ppm = 0,93/1,19 [s, 6H, C(CH₃)₂], 1,95/ 2,34 (s, 6H, 2CH₃), 4,44/4,84 [dd, ²*J*(HH) = 13,2 Hz, 2H, CH₂S(O)], 2,8/3,39 [m / dd, ²*J*(HH) = 12,5, ⁴*J*(HP) = 3,7, 2H, CH₂S], 7,05 (m_c, 22H, Aromaten-H). – ¹³C-NMR (CD₂Cl₂): 19,42/ 19,54 [s, C(<u>CH</u>₃)₂], 26,23/26,54 (s, 2CH₃), 31,29 (s, CH₂S), 30–32 (m, PCH₂), 72,54 [s, CH₂S(O)], 75,61/ 76,64 (m, OCH). – ³¹P-NMR (CD₂Cl₂): δ /ppm = 3,33/4,40 [AB-Spinsystem, ²*J*(PP) = 19,3, ¹*J*(PPt) = 2699/2701 Hz]. – MS (pos.-FAB): *m*/z = 938 (M⁺, 16%).

 $\begin{array}{ccc} C_{41}H_{44}O_3P_2PtS_3 & \text{Ber.: } C \ 52,50 & \text{H} \ 4,73 & \text{S} \ 10,25 \\ (938,00) & \text{Gef.: } C \ 51,61 & \text{H} \ 4,72 & \text{S} \ 9,77. \end{array}$

6c: Ausb. 98 mg (70%); *Fp*. 167–169 °C; $C_{41}H_{44}O_3P_2PtS_3$ (938.00 g/mol). – IR: v/cm⁻¹ = 1054 s (S=O). – ¹H-NMR (CD₂Cl₂): *Diastereoisomer I*: δ /ppm = 1,11/1,15 [s, 6H, C(CH₃)₂], 2,08/2,18 (s, 6H, 2CH₃), 4,24/4,56 [dd, ²J(HH) = 12,7 Hz, 2H, CH₂S(O)], 3,13/3,7 (dd/m, ²J(HH) = 12,5, ⁴J(HP) = 4,6, 2H, CH₂S), 6,84 (s, 2H, Aromaten-H), 7,05 (m_c, 20H, 2PPh₂). – ³¹P-NMR (CD₂Cl₂): δ /ppm = 1,45/0,68 [AB-Spinsystem, ²J(PP) = 19,2, ¹J(PPt) = 2968/2993 Hz]. Diastereoisomer II: δ /ppm = 0,85/1,14 [s, 6H, C(CH₃)₂], 2,08/2,13 (s, 6H, 2CH₃), 4,24/4,56 [dd, ²J(HH) = 11,7 Hz, 2H, CH₂S(O)], 2,95/3,38 [dd/dd, ²J(HH) = 13,2, ⁴J(HP) = 5,7, 2H, CH₂S[, 6,45/6,48 (s, 2H, Aromaten-H), 7,12 (m_c, 20H, 2PPh₂). – ³¹P-NMR (CD₂Cl₂): δ /ppm = 3,79/4,94 [AB-Spinsystem, ²J(PP) = 19,1, ¹J(PPt) = 2751/2752 Hz]. – MS (pos.-FAB): m/z = 938 (M⁺, 38%).

$C_{41}H_{44}O_3P_2PtS_3$	Ber.: C 52,50	H 4,73	S 10,25
(938,00)	Gef.: C 52,53	H 4,68	S 9,89.

Reaktion von 5a mit PBu₃ (¹H- und ³¹P-NMR-spektroskopischer Nachweis von 7 und 8)

Eine Lösung von **5a** (24 mg, 0,025 mmol) und PBu₃ (20 mg, 0,10 mmol) in 2 ml [D₂]Dichlormethan wird bei Raumtemperatur 4 h gerührt. Die ¹H- und ³¹P-NMR-Spektren zeigen, daß zunächst Komplex **7** und dann **8** entsteht.

7: ¹H-NMR (CD₂Cl₂): δ /ppm = 2,35/2,39 (s, 2CH₃, 6H), 4,41/ 4,84 [dd/dd, ²*J*(HH) = 14,1, ⁵*J*(PP) = 8,5 Hz, 2H, CH₂S(O)], 4,0/3,67 [m/dd, ²*J*(HH) = 16,4, ⁴*J*(PP) = 9,9 Hz 2H, CH₂S], 6,77/6,84 [dd, ³*J*(HH) = 7,6 Hz, 2H, Aromaten-H]. - ³¹P-NMR (CD₂Cl₂): δ /ppm = 2,56/3.74 [AB-Spinsystem, ²*J*(PP) = 19,0, ¹*J*(PPt) = 2711/3000 Hz].

8: ³¹P-NMR (CD₂Cl₂): δ /ppm = -3,68/9,42 [AB-Spinsystem, ²*J*(PP) = 19,4, ¹*J*(PPt) = 2173/3130 Hz].

Literatur

- [1] XIII. Mitt.: W. Weigand, R. Wünsch, K. Polborn, Inorg. Chim. Acta **1998**, *273*, 106
- M. Mikolajczyk, P. Lyzwa, J. Drabowicz, M. Wieczorek G. Bujacz, Angew. Chem., **1989**, *101*, 87; Angew. Chem., Int. Ed. Engl. **1989**, *28*, 97

- [3] (a) T. Bayer, Dissertation, Univ. München 1988; (b) W. Breu, Dissertation, Univ. München 1991; (c) E. Block, S. Ahmad, J. L. Catalfamo, M. K. Jain, R. Aspitz - Castro, J. Am. Chem. Soc. 1986, 108, 7045; (d) H. Wagner and W. Breu, in: Tagungsbericht Knoblauch, Symposium über die Chemie, Pharmakologie und medizinische Anwendung, Dtsch. Apoth. Ztg. 1989, 129, 28. Suppl. 21; (e) H. Wagner, W. Dorsch, T. Bayer, W. Breu, F. Willer, Prostaglandins, Leukotrienes and Essential Fatty Acids 1990, 39, 59; (f) W. Breu, K. Redl, G. Bosl, W. Weigand, H. Wagner, unveröffentlichte Ergebnisse; (g) T. Takata, T. Endo, in: The Chemistry of Sulphinic Acides, Esters and their Derivatives, S. Patai (Hsg.), John Wiley & Sons, Chichester 1990, S. 538 und dort zit. Lit.; (h) S. Oae, in: Organic Chemistry of Sulfur, Plenum Press, New York 1977; (i) E. Block, Angew. Chem. 1992, 104, 1158; Angew. Chem. Int. Ed. Engl. 1992, 31, 1135; (j) F. Freeman, Chem. Rev. 1984, 84, 117; (k) E. Block, M. Thiruvazhi, P. J. Toscano, T. Bayer, S. Grisoni, S.-H. Zhao, J. Am. Chem. Soc. 1996, 118, 2790; (1) E. Block, T. Bayer, S. Naganathan, S.-H. Zhao, J. Am. Chem. Soc. 1996, 118, 2799; (m) W. Weigand, R. Wünsch, Chem. Ber. 1996, 129, 1409
- [4] A. Shaver, P.-Y. Plouffe, J. Am. Chem. Soc. 1991, 113, 7780
- [5] (a) W. Weigand, G. Bosl, C. Robl, W. Breu, H. Wagner, in:
 23. GDCh Hauptversammlung, ISBN 3-527-28248-3, München 1991, S. 140; (b) W. Weigand, G. Bosl, C. Robl, Z. Naturforsch., Teil B **1992**, 47, 39; (c) W. Weigand, G. Bosl, C. Robl, J. Kroner, Z. Naturforsch., Teil B **1993**, 48, 627
- [6] (a) W. Weigand, R. Wünsch, C. Robl, W. Amrein, Chem. Ber. 1994, 127, 97; (b) G. Bosl, R. Wünsch, C. Robl, W. Weigand, in: Stereoselective Reactions of Metal-Activated Molecules, H. Werner, J. Sundermeyer (Hsg.), Vieweg-Verlag, Braunschweig/Wiesbaden 1995
- [7] (a) B. Milligan, J. M. Swan, J. Chem. Soc. **1965**, 2901; (b) P.
 K. Singh, L. Field, B. J. Sweetman, Phosphorus Sulfur **1988**, *39*, 61
- [8] R. Steudel, Y. Drozdova, Chem. Eur. J. 1996, 2, 1060
- [9] (a) W. Weigand, G. Bosl, C. Robl, W. Amrein, Chem. Ber. 1992, 125, 1047; (b) W. Weigand, G. Bosl, Z. Naturforsch., Teil B, 1992, 47, 1165
- [10] (a) C. Mealli, A. Ienco, D. M. Proserpio, CACAO (Computer Aided Composition of Atomic Orbitals), PC-Beta Version 5.0, Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione, Florence 1998; (b) C. Mealli, D.M. Proserpio, J. Chem. Educ. 1990, 67, 399; (c) R. Hoffmann, SIMCON, Cornell University, Ithaca, New York 1980; (d) J.H. Ammeter, H.-B. Bürgi, J.C. Thibeault, R. Hoffmann, J. Am. Chem. Soc. 1978, 100, 3686
- [11] (a) R. Hoffmann, J. Chem. Phys. **1963**, *39*, 1397; (b) R. Hoffmann, W. N. Lipscomb, J. Chem. Phys. **1962**, *36*, 2179
- [12] T. A. Albright, J. K. Burdett, M. H. Whangbo, Orbital Interactions in Chemistry, John Wiley & Son, New York 1985, Kap. 19
- [13] K. von Bredow, Dissertation, Univ. Freiburg 1968
- [14] U. Nagel, Chem. Ber. **1982**, *115*, 1998
- [15] J. M. Brown, N. A. Cooley, Organometallics 1990, 9, 359
- [16] Herstellung erfolgt analog [14]

Korrespondenzanschrift:

Prof. Dr. Wolfgang Weigand

Friedrich-Schiller-Universität Jena

Institut für Anorganische und Analytische Chemie

August-Bebel-Straße 2

D-07743 Jena

- Fax: Internat. code (0)3641-948102
- E-mail: c8wewo@rz.uni-jena.de